Pseudo-time algorithms for the Navier-Stokes equations
نویسندگان
چکیده
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملoptimization with the time-dependent navier-stokes equations as constraints
in this paper, optimal distributed control of the time-dependent navier-stokes equations is considered. the control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. a mixed numerical method involving a quasi-newton algorithm, a novel calculation of the gradients and an inhomogeneous navier-stokes solver, to find the opt...
متن کاملPseudo-compressibility Methods for the Unsteady Incompressible Navier-stokes Equations
We present in this paper a up-to-date review on the error analysis of a class of pseudo-compressibility methods and their time discretizations for the unsteady incompressible Navier-Stokes equations.
متن کاملPseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
The space-time discontinuous Galerkin discretization of the compressible NavierStokes equations results in a non-linear system of algebraic equations, which we solve with a local pseudo-time stepping method. Explicit Runge-Kutta methods developed for the Euler equations are unsuitable for this purpose as a severe stability constraint linked to the viscous part of the equations must be satisfied...
متن کاملAlgorithms for the Euler and Navier-stokes Equations for Supercomputers
We consider the steady state Euler and Navier-Stokes equations for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme independent this preconditioning is done at the differential equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 1986
ISSN: 0168-9274
DOI: 10.1016/0168-9274(86)90037-1